Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(19): 12925-12932, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691507

ABSTRACT

Technological breakthroughs in cryo-electron microscopy (cryo-EM) methods open new perspectives for highly detailed structural characterizations of extracellular vesicles (EVs) and synthetic liposome-protein assemblies. Structural characterizations of these vesicles in solution under a nearly native hydrated state are of great importance to decipher cell-to-cell communication and to improve EVs' application as markers in diagnosis and as drug carriers in disease therapy. However, difficulties in preparing holey carbon cryo-EM grids with low vesicle heterogeneities, at low concentration and with kinetic control of the chemical reactions or assembly processes, have limited cryo-EM use in the EV study. We report a straightforward membrane vesicle cryo-EM sample preparation method that assists in circumventing these limitations by using a free-standing DNA-affinity superlattice for covering holey carbon cryo-EM grids. Our approach uses DNA origami to self-assemble to a solution-stable and micrometer-sized ordered molecular template in which structure and functional properties can be rationally controlled. We engineered the template with cholesterol-binding sites to specifically trap membrane vesicles. The advantages of this DNA-cholesterol-affinity lattice (DCAL) include (1) local enrichment of artificial and biological vesicles at low concentration and (2) isolation of heterogeneous cell-derived membrane vesicles (exosomes) from a prepurified pellet of cell culture conditioned medium on the grid.


Subject(s)
Cryoelectron Microscopy , DNA , Cryoelectron Microscopy/methods , DNA/chemistry , Extracellular Vesicles/chemistry , Humans , Cholesterol/chemistry , Liposomes/chemistry
2.
Nat Commun ; 15(1): 3383, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649354

ABSTRACT

A double septin ring accompanies cytokinesis in yeasts and mammalian cells. In budding yeast, reorganisation of the septin collar at the bud neck into a dynamic double ring is essential for actomyosin ring constriction and cytokinesis. Septin reorganisation requires the Mitotic Exit Network (MEN), a kinase cascade essential for cytokinesis. However, the effectors of MEN in this process are unknown. Here we identify the F-BAR protein Hof1 as a critical target of MEN in septin remodelling. Phospho-mimicking HOF1 mutant alleles overcome the inability of MEN mutants to undergo septin reorganisation by decreasing Hof1 binding to septins and facilitating its translocation to the actomyosin ring. Hof1-mediated septin rearrangement requires its F-BAR domain, suggesting that it may involve a local membrane remodelling that leads to septin reorganisation. In vitro Hof1 can induce the formation of intertwined septin bundles, while a phosphomimetic Hof1 protein has impaired septin-bundling activity. Altogether, our data indicate that Hof1 modulates septin architecture in distinct ways depending on its phosphorylation status.


Subject(s)
Cytokinesis , Microtubule-Associated Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Septins , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Phosphorylation , Septins/metabolism , Septins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Actomyosin/metabolism , Saccharomycetales/metabolism , Saccharomycetales/genetics , Mutation , Protein Binding
3.
J Mol Biol ; 436(3): 168411, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38135181

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR. We recently reported a cryogenic electron microscopy (cryo-EM) structure of human AHR bound to the natural ligand indirubin, the chaperone Hsp90 and the co-chaperone XAP2 that provided the first experimental visualization of its ligand-binding PAS-B domain. Here, we report a 2.75 Å resolution structure of the AHR complex bound to the environmental pollutant benzo[a]pyrene (B[a]P). The structure substantiates the existence of a bipartite PAS-B ligand-binding pocket with a geometrically constrained primary binding site controlling ligand binding specificity and affinity, and a secondary binding site contributing to the binding promiscuity of AHR. We also report a docking study of B[a]P congeners that validates the B[a]P-bound PAS-B structure as a suitable model for accurate computational ligand binding assessment. Finally, comparison of our agonist-bound complex with the recently reported structures of mouse and fruit fly AHR PAS-B in different activation states suggests a ligand-induced loop conformational change potentially involved in the regulation of AHR function.


Subject(s)
Benzo(a)pyrene , Environmental Pollutants , Receptors, Aryl Hydrocarbon , Humans , Benzo(a)pyrene/chemistry , Binding Sites , Ligands , Protein Domains , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/chemistry , Environmental Pollutants/chemistry
4.
Proc Natl Acad Sci U S A ; 120(48): e2309412120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37983500

ABSTRACT

Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.


Subject(s)
Orthobunyavirus , Tospovirus , Orthobunyavirus/genetics , RNA, Viral/genetics , Tospovirus/genetics , Genome, Viral/genetics , Virion/genetics
5.
PLoS Pathog ; 19(1): e1011086, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36622854

ABSTRACT

Nanoviruses are plant multipartite viruses with a genome composed of six to eight circular single-stranded DNA segments. The distinct genome segments are encapsidated individually in icosahedral particles that measure ≈18 nm in diameter. Recent studies on the model species Faba bean necrotic stunt virus (FBNSV) revealed that complete sets of genomic segments rarely occur in infected plant cells and that the function encoded by a given viral segment can complement the others across neighbouring cells, presumably by translocation of the gene products through unknown molecular processes. This allows the viral genome to replicate, assemble into viral particles and infect anew, even with the distinct genome segments scattered in different cells. Here, we question the form under which the FBNSV genetic material propagates long distance within the vasculature of host plants and, in particular, whether viral particle assembly is required. Using structure-guided mutagenesis based on a 3.2 Å resolution cryogenic-electron-microscopy reconstruction of the FBNSV particles, we demonstrate that specific site-directed mutations preventing capsid formation systematically suppress FBNSV long-distance movement, and thus systemic infection of host plants, despite positive detection of the mutated coat protein when the corresponding segment is agroinfiltrated into plant leaves. These results strongly suggest that the viral genome does not propagate within the plant vascular system under the form of uncoated DNA molecules or DNA:coat-protein complexes, but rather moves long distance as assembled viral particles.


Subject(s)
Nanovirus , Vicia faba , Nanovirus/genetics , Capsid Proteins/genetics , Vicia faba/genetics , DNA, Viral/genetics , Virion/genetics , Genome, Viral , Mutagenesis
6.
Nat Commun ; 14(1): 484, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717560

ABSTRACT

Self-assembly of macromolecules into higher-order symmetric structures is fundamental for the regulation of biological processes. Higher-order symmetric structure self-assembly by the gene expression machinery, such as bacterial DNA-dependent RNA polymerase (RNAP), has never been reported before. Here, we show that the stress-response σB factor from the human pathogen, Mycobacterium tuberculosis, induces the RNAP holoenzyme oligomerization into a supramolecular complex composed of eight RNAP units. Cryo-electron microscopy revealed a pseudo-symmetric structure of the RNAP octamer in which RNAP protomers are captured in an auto-inhibited state and display an open-clamp conformation. The structure shows that σB is sequestered by the RNAP flap and clamp domains. The transcriptional activator RbpA prevented octamer formation by promoting the initiation-competent RNAP conformation. Our results reveal that a non-conserved region of σ is an allosteric controller of transcription initiation and demonstrate how basal transcription factors can regulate gene expression by modulating the RNAP holoenzyme assembly and hibernation.


Subject(s)
DNA-Directed RNA Polymerases , Mycobacterium tuberculosis , Sigma Factor , Humans , Bacterial Proteins/metabolism , Cryoelectron Microscopy , DNA-Directed RNA Polymerases/metabolism , Holoenzymes/metabolism , Mycobacterium tuberculosis/genetics , Sigma Factor/metabolism , Transcription Factors/metabolism , Transcription, Genetic
7.
Cell Rep ; 41(10): 111765, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476870

ABSTRACT

The septin collar of budding yeast is an ordered array of septin filaments that serves a scaffolding function for the cytokinetic machinery at the bud neck and compartmentalizes the membrane between mother and daughter cell. How septin architecture is aided by septin-binding proteins is largely unknown. Syp1 is an endocytic protein that was implicated in the timely recruitment of septins to the newly forming collar through an unknown mechanism. Using advanced microscopy and in vitro reconstitution assays, we show that Syp1 is able to align laterally and tightly pack septin filaments, thereby forming flat bundles or sheets. This property is shared by the Syp1 mammalian counterpart FCHo2, thus emphasizing conserved protein functions. Interestingly, the septin-bundling activity of Syp1 resides mainly in its intrinsically disordered region. Our data uncover the mechanism through which Syp1 promotes septin collar assembly and offer another example of functional diversity of unstructured protein domains.


Subject(s)
Microscopy , Septins
8.
Nat Commun ; 13(1): 7010, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385050

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.85 Å structure of the human indirubin-bound AHR complex with the chaperone Hsp90 and the co-chaperone XAP2, reported herein, reveals a closed conformation Hsp90 dimer with AHR threaded through its lumen and XAP2 serving as a brace. Importantly, we disclose the long-awaited structure of the AHR PAS-B domain revealing a unique organisation of the ligand-binding pocket and the structural determinants of ligand-binding specificity and promiscuity of the receptor. By providing structural details of the molecular initiating event leading to AHR activation, our study rationalises almost forty years of biochemical data and provides a framework for future mechanistic studies and structure-guided drug design.


Subject(s)
HSP90 Heat-Shock Proteins , Intracellular Signaling Peptides and Proteins , Receptors, Aryl Hydrocarbon , Humans , Cryoelectron Microscopy , Cytosol/metabolism , HSP90 Heat-Shock Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Ligands , Receptors, Aryl Hydrocarbon/metabolism
9.
Sci Adv ; 8(35): eabo7761, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36054364

ABSTRACT

Arrestins interact with G protein-coupled receptors (GPCRs) to stop G protein activation and to initiate key signaling pathways. Recent structural studies shed light on the molecular mechanisms involved in GPCR-arrestin coupling, but whether this process is conserved among GPCRs is poorly understood. Here, we report the cryo-electron microscopy active structure of the wild-type arginine-vasopressin V2 receptor (V2R) in complex with ß-arrestin1. It reveals an atypical position of ß-arrestin1 compared to previously described GPCR-arrestin assemblies, associated with an original V2R/ß-arrestin1 interface involving all receptor intracellular loops. Phosphorylated sites of the V2R carboxyl terminus are clearly identified and interact extensively with the ß-arrestin1 N-lobe, in agreement with structural data obtained with chimeric or synthetic systems. Overall, these findings highlight a notable structural variability among GPCR-arrestin signaling complexes.

10.
Commun Biol ; 5(1): 120, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140348

ABSTRACT

The bacterial Rho factor is a ring-shaped motor triggering genome-wide transcription termination and R-loop dissociation. Rho is essential in many species, including in Mycobacterium tuberculosis where rho gene inactivation leads to rapid death. Yet, the M. tuberculosis Rho [MtbRho] factor displays poor NTPase and helicase activities, and resistance to the natural Rho inhibitor bicyclomycin [BCM] that remain unexplained. To address these issues, we solved the cryo-EM structure of MtbRho at 3.3 Šresolution. The MtbRho hexamer is poised into a pre-catalytic, open-ring state wherein specific contacts stabilize ATP in intersubunit ATPase pockets, thereby explaining the cofactor preference of MtbRho. We reveal a leucine-to-methionine substitution that creates a steric bulk in BCM binding cavities near the positions of ATP γ-phosphates, and confers resistance to BCM at the expense of motor efficiency. Our work contributes to explain the unusual features of MtbRho and provides a framework for future antibiotic development.


Subject(s)
Mycobacterium tuberculosis , Bridged Bicyclo Compounds, Heterocyclic , Cryoelectron Microscopy , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Rho Factor/chemistry , Rho Factor/genetics , Rho Factor/metabolism , Transcription Factors/metabolism
11.
FEBS J ; 289(16): 4869-4887, 2022 08.
Article in English | MEDLINE | ID: mdl-35152545

ABSTRACT

Tuberculosis claims significantly more than one million lives each year. A feasible way to face the issue of drug resistance is the development of new antibiotics. Bacterial uridine 5'-monophosphate (UMP) kinase is a promising target for novel antibiotic discovery as it is essential for bacterial survival and has no counterpart in human cells. The UMP kinase from M. tuberculosis is also a model of particular interest for allosteric regulation with two effectors, GTP (positive) and UTP (negative). In this study, using X-ray crystallography and cryo-electron microscopy, we report for the first time a detailed description of the negative effector UTP-binding site of a typical Gram-positive behaving UMP kinase. Comparison between this snapshot of low affinity for Mg-ATP with our previous 3D-structure of the GTP-bound complex of high affinity for Mg-ATP led to a better understanding of the cooperative mechanism and the allosteric regulation of UMP kinase. Thermal shift assay and circular dichroism experiments corroborate our model of an inhibition by UTP linked to higher flexibility of the Mg-ATP-binding domain. These new structural insights provide valuable knowledge for future drug discovery strategies targeting bacterial UMP kinases.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacteria , Adenosine Triphosphate , Allosteric Regulation , Amino Acid Sequence , Anti-Bacterial Agents/pharmacology , Cryoelectron Microscopy , Guanosine Triphosphate/pharmacology , Humans , Nucleoside-Phosphate Kinase , Uridine Monophosphate/pharmacology , Uridine Triphosphate/pharmacology
12.
Sci Adv ; 7(21)2021 05.
Article in English | MEDLINE | ID: mdl-34020960

ABSTRACT

The antidiuretic hormone arginine-vasopressin (AVP) forms a signaling complex with the V2 receptor (V2R) and the Gs protein, promoting kidney water reabsorption. Molecular mechanisms underlying activation of this critical G protein-coupled receptor (GPCR) signaling system are still unknown. To fill this gap of knowledge, we report here the cryo-electron microscopy structure of the AVP-V2R-Gs complex. Single-particle analysis revealed the presence of three different states. The two best maps were combined with computational and nuclear magnetic resonance spectroscopy constraints to reconstruct two structures of the ternary complex. These structures differ in AVP and Gs binding modes. They reveal an original receptor-Gs interface in which the Gαs subunit penetrates deep into the active V2R. The structures help to explain how V2R R137H or R137L/C variants can lead to two severe genetic diseases. Our study provides important structural insights into the function of this clinically relevant GPCR signaling complex.

13.
J Autoimmun ; 121: 102660, 2021 07.
Article in English | MEDLINE | ID: mdl-34020253

ABSTRACT

Systemic sclerosis (SSc) is a potentially lethal disease with no curative treatment. Mesenchymal stromal cells (MSCs) have proved efficacy in SSc but no data is available on MSC-derived extracellular vesicles (EVs) in this multi-organ fibrosis disease. Small size (ssEVs) and large size EVs (lsEVs) were isolated from murine MSCs or human adipose tissue-derived MSCs (ASCs). Control antagomiR (Ct) or antagomiR-29a-3p (A29a) were transfected in MSCs and ASCs before EV production. EVs were injected in the HOCl-induced SSc model at day 21 and euthanasized at day 42. We found that both ssEVs and lsEVs were effective to slow-down the course of the disease. All disease parameters improved in skin and lungs. Interestingly, down-regulating miR-29a-3p in MSCs totally abolished therapeutic efficacy. Besides, we demonstrated a similar efficacy of human ASC-EVs and importantly, EVs from A29a-transfected ASCs failed to improve skin fibrosis. We identified Dnmt3a, Pdgfrbb, Bcl2, Bcl-xl as target genes of miR-29a-3p whose regulation was associated with skin fibrosis improvement. Our study highlights the therapeutic role of miR-29a-3p in SSc and the importance of regulating methylation and apoptosis.


Subject(s)
Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/immunology , MicroRNAs/metabolism , Scleroderma, Systemic/therapy , Animals , Apoptosis/genetics , Apoptosis/immunology , DNA Methylation/immunology , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Gene Expression Regulation/immunology , Humans , Hypochlorous Acid/administration & dosage , Hypochlorous Acid/toxicity , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/immunology
14.
ACS Nano ; 15(3): 4186-4196, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33586425

ABSTRACT

Technological breakthroughs in electron microscopy (EM) have made it possible to solve structures of biological macromolecular complexes and to raise novel challenges, specifically related to sample preparation and heterogeneous macromolecular assemblies such as DNA-protein, protein-protein, and membrane protein assemblies. Here, we built a V-shaped DNA origami as a scaffolding molecular system to template proteins at user-defined positions in space. This template positions macromolecular assemblies of various sizes, juxtaposes combinations of biomolecules into complex arrangements, isolates biomolecules in their active state, and stabilizes membrane proteins in solution. In addition, the design can be engineered to tune DNA mechanical properties by exerting a controlled piconewton (pN) force on the molecular system and thus adapted to characterize mechanosensitive proteins. The binding site can also be specifically customized to accommodate the protein of interest, either interacting spontaneously with DNA or through directed chemical conjugation, increasing the range of potential targets for single-particle EM investigation. We assessed the applicability for five different proteins. Finally, as a proof of principle, we used RNAP protein to validate the approach and to explore the compatibility of the template with cryo-EM sample preparation.


Subject(s)
DNA , Single Molecule Imaging , Cryoelectron Microscopy , Macromolecular Substances , Microscopy, Electron
15.
Biomaterials ; 231: 119675, 2020 02.
Article in English | MEDLINE | ID: mdl-31838346

ABSTRACT

In regards to their key role in intercellular communication, extracellular vesicles (EVs) have a strong potential as bio-inspired drug delivery systems (DDS). With the aim of circumventing some of their well-known issues (production yield, drug loading yield, pharmacokinetics), we specifically focused on switching the biological vision of these entities to a more physico-chemical one, and to consider and fine-tune EVs as synthetic vectors. To allow a rational use, we first performed a full physico-chemical (size, concentration, surface charge, cryoTEM), biochemical (western blot, proteomics, lipidomics, transcriptomics) and biological (cell internalisation) characterisation of murine mesenchymal stem cell (mMSC)-derived EVs. A stability study based on evaluating the colloidal behaviour of obtained vesicles was performed in order to identify optimal storage conditions. We evidenced the interest of using EVs instead of liposomes, in regards to target cell internalisation efficiency. EVs were shown to be internalised through a caveolae and cholesterol-dependent pathway, following a different endocytic route than liposomes. Then, we characterised the effect of physical methods scarcely investigated with EVs (extrusion through 50 nm membranes, freeze-drying, sonication) on EV size, concentration, structure and cell internalisation properties. Our extensive characterisation of the effect of these physical processes highlights their promise as loading methods to make EVs efficient delivery vehicles.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Drug Delivery Systems , Freeze Drying , Liposomes , Mice
16.
Int J Mol Sci ; 20(5)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813632

ABSTRACT

HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the C-terminal end of its subunits to HslV and activates it by a yet unclear allosteric mechanism. We undertook the characterization of HslV from Leishmania major (LmHslV), a trypanosomatid that expresses two isoforms for HslU, LmHslU1 and LmHslU2. Using a novel and sensitive peptide substrate, we found that LmHslV can be activated by peptides derived from the C-termini of both LmHslU1 and LmHslU2. Truncations, Ala- and D-scans of the C-terminal dodecapeptide of LmHslU2 (LmC12-U2) showed that five out of the six C-terminal residues of LmHslU2 are essential for binding to and activating HslV. Peptide cyclisation with a lactam bridge allowed shortening of the peptide without loss of potency. Finally, we found that dodecapeptides derived from HslU of other parasites and bacteria are able to activate LmHslV with similar or even higher efficiency. Importantly, using electron microscopy approaches, we observed that the activation of LmHslV was accompanied by a large conformational remodeling, which represents a yet unidentified layer of control of HslV activation.


Subject(s)
Leishmania major/enzymology , Peptides/pharmacology , Serine Endopeptidases/metabolism , Amino Acid Sequence , Enzyme Activation/drug effects , Peptides/chemistry , Protein Structure, Secondary , Recombinant Proteins/isolation & purification , Serine Endopeptidases/chemistry , Substrate Specificity
17.
Virology ; 530: 75-84, 2019 04.
Article in English | MEDLINE | ID: mdl-30782565

ABSTRACT

The Broad bean stain virus (BBSV) is a member of the genus Comovirus infecting Fabaceae. The virus is transmitted through seed and by plant weevils causing severe and widespread disease worldwide. BBSV has a bipartite, positive-sense, single-stranded RNA genome encapsidated in icosahedral particles. We present here the cryo-electron microscopy reconstruction of the BBSV and an atomic model of the capsid proteins refined at 3.22 Šresolution. We identified residues involved in RNA/capsid interactions revealing a unique RNA genome organization. Inspection of the small coat protein C-terminal domain highlights a maturation cleavage between Leu567 and Leu568 and interactions of the C-terminal stretch with neighbouring small coat proteins within the capsid pentameric turrets. These interactions previously proposed to play a key role in the assembly of the Cowpea mosaic virus suggest a common capsid assembly mechanism throughout all comovirus species.


Subject(s)
Capsid/metabolism , Capsid/ultrastructure , Comovirus/physiology , Comovirus/ultrastructure , Cryoelectron Microscopy , Virus Assembly , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Models, Molecular , Protein Binding , RNA, Viral/metabolism
18.
Nature ; 552(7683): 72-77, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29219968

ABSTRACT

Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair 'voxels' that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.


Subject(s)
Algorithms , DNA/chemistry , DNA/chemical synthesis , Nanostructures/chemistry , Nanotechnology , Nucleic Acid Conformation , Animals , Electron Microscope Tomography , Imaging, Three-Dimensional , Nucleotides/chemistry , Rotation , Sequence Analysis, DNA , Ursidae
19.
Nanomaterials (Basel) ; 7(7)2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28665317

ABSTRACT

The biological fate of nanoparticles (NPs) for biomedical applications is highly dependent of their size and charge, their aggregation state and their surface chemistry. The chemical composition of the NPs surface influences their stability in biological fluids, their interaction with proteins, and their attraction to the cell membranes. In this work, core-shell magnetic mesoporous silica nanoparticles (Fe3O4@MSN), that are considered as potential theranostic candidates, are coated with polyethylene glycol (PEG) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. Their biological fate is studied in comparison to the native NPs. The physicochemical properties of these three types of NPs and their suspension behavior in different media are investigated. The attraction to a membrane model is also evaluated using a supported lipid bilayer. The surface composition of NPs strongly influences their dispersion in biological fluids mimics, protein binding and their interaction with cell membrane. While none of these types of NPs is found to be toxic on mice four days after intravenous injection of a dose of 40 mg kg-1 of NPs, their surface coating nature influences the in vivo biodistribution. Importantly, NP coated with DMPC exhibit a strong accumulation in liver and a very low accumulation in lung in comparison with nude or PEG ones.

20.
Nucleic Acids Res ; 42(4): 2624-36, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24297254

ABSTRACT

SpoIIIE/FtsK are a family of ring-shaped, membrane-anchored, ATP-fuelled motors required to segregate DNA across bacterial membranes. This process is directional and requires that SpoIIIE/FtsK recognize highly skewed octameric sequences (SRS/KOPS for SpoIIIE/FtsK) distributed along the chromosome. Two models have been proposed to explain the mechanism by which SpoIIIE/FtsK interact with DNA. The loading model proposes that SpoIIIE/FtsK oligomerize exclusively on SpoIIIE recognition sequence/orienting polar sequences (SRS/KOPS) to accomplish directional DNA translocation, whereas the target search and activation mechanism proposes that pre-assembled SpoIIIE/FtsK hexamers bind to non-specific DNA, reach SRS/KOPS by diffusion/3d hopping and activate at SRS/KOPS. Here, we employ single-molecule total internal reflection imaging, atomic force and electron microscopies and ensemble biochemical methods to test these predictions and obtain further insight into the SpoIIIE-DNA mechanism of interaction. First, we find that SpoIIIE binds DNA as a homo-hexamer with neither ATP binding nor hydrolysis affecting the binding mechanism or affinity. Second, we show that hexameric SpoIIIE directly binds to double-stranded DNA without requiring the presence of SRS or free DNA ends. Finally, we find that SpoIIIE hexamers can show open and closed conformations in solution, with open-ring conformations most likely resembling a state poised to load to non-specific, double-stranded DNA. These results suggest how SpoIIIE and related ring-shaped motors may be split open to bind topologically closed DNA.


Subject(s)
Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Biological Transport , DNA/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/ultrastructure , Microscopy, Electron , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...